Talk at DesignOps Global Conference 2019 , Manchester, England, 30-31st May 2019

Topic: [TBD – On  DesOps /DesignOps ]
Date: 30/31 May 2019
Venue:  Manchester, England

Super excited to be part of DesignOps Global Conference (www.designops-conference.com) to share ideas with some great minds on hashtagdesignops hashtagdesops hashtagdesign and the future of hashtagdesign from the lens of hashtagopenorg culture and hashtagdesignthinking being applied as the way of life to improve and optimize the operations in the organizations to deliver the “wow” experience, through best utilizing the hashtagprocess and hashtagecosystems and hashtagtechnology in context. Thanks, Peter Fossick. Looking forward to a series of engaging sessions for every hashtagdesigner / hashtagleader.

 

About the Conference:

The DesignOps Global Conference is for design leaders, developers, practitioners, product managers, service innovators and business leaders that are defining the way we design and develop new products and services. Join us Manchester for the DesignOps Global Conference 2019 Agile and Beyond – New Frontiers in Design
30 + 31 May, 2019

The themes for this year’s DesignOps Global Conference are:

  • DAY 1
    • Theme 1: DesignOps and the impact of design
    • Theme 2: Collaborating at speed and scale
  • DAY 2
    • Theme 3: Developing new cultures – developing new organisations
    • Theme 4: DesignOps in the era of AI and cognitive computing

More details of the event and to get the pass visit https://designops-conference.com/

 

 

 

 

 

 

 

 

Talk at RH UI/UX Community of Practice: DesOps 101-Overview

DesOps 101: Overview

 Community Calls 

The talk will focus on overview  DesOps.

Three key takeaways:

  1. Background and overview of DesOps.
  2. The high-level overview of the different dimensions of Design operations
  3. DesOps from Service Design point of view
  4. Samples/Examples
  5. Cultural dimension and Open Org aspect.

Date & Time: 12:AM – 1 PM  on 10 Nov 2018 (IST)
Venue:  Virtual Community call over BlueJeans.

 

 

 

Slides

 

 

 

 

 

 

 

 

[Workshop Deck] PART-2: Applying DesOps in Your Enterprise

[This is the SECOND part of the half-day workshop titled “Applying DesOps in Your Enterprise” I conducted at the “UX India Conference 2018” on 4th October, 2018, Bengaluru. This part focused on ‘Design System’ aspect of DesOps, and tried to address the challenges that designer face when they collaborate using around either two or more design systems. Neither of the design system as of today talk to each other in the same way, nor is the fact that that none of the design systems organize and define their patterns in the same structure.

This part of the work shop attempts to solve that issue through introducing the concept of “CDN based Open Design Eco-System” (* CDN – Content Delivery Network) that is modelled on a Nuclear Design Model which can be scaled up and be made semantic, so that the automation of design process can be made possible. In the workshop we also see an implementation or a proof of the concept for the web-design and development domain using HTML, CSS and Javascript. This uses CSS3 variables to implement an extensible framework based on the Nuclear Design Model.

The code can be downloaded from https://github.com/OpenDesignSystem/ODS-CDN .

You can explore more at

http://desops.io and http://opendesignsystem.org/portal/nuclear-design/

Workshop at UX India International Conference 2018 : Applying DesOps in Your Enterprise

]

 

 

You can explore more here:

https://www.linkedin.com/pulse/open-design-system-adding-semantics-part-3-heredity-samir-dash/

‘Semantic Design System : Redefining Design Systems for DesOps’ https://www.slideshare.net/MobileWish/semantic-design-system-redefining-design-systems-for-desops-v10-1sep-2018

Nuclear Design: https://www.linkedin.com/pulse/photo-essay-semantic-design-system-part-2-nuclear-model-samir-dash/

Open Design System Ontology: https://www.linkedin.com/pulse/photo-essay-semantic-design-system-part-3-open-ontology-samir-dash/?

 

 

(c) Samir Dash, 2018. All rights reserved. This content including the images are licensed under a Creative Commons Attribution 4.0 International license

 

 

Infographic: The 3 Dimensions & 3 Characteristics (3Cs) of DesOps

©2018,”The 3 Dimensions & 3 Characteristics (3Cs) of DesOps” by Samir Dash.
Creative Commons Attribution-Share Alike 4.0 International License
Read about 3 Dimensions

[Slides] Ditto – Design Life Cycle Management Concept for DesOps (2016-17)

You can read a related article Translating Value at Different Stages of Design with Minimal Waste here:
http://desops.io/2018/05/12/translating-value-at-different-stages-of-design-with-minimal-waste/Also associated video here :
http://desops.io/2018/05/12/video-ditto-design-life-cycle-management-concept-for-desops-2016-17/

[Video] Ditto – Design Life Cycle Management Concept for DesOps (2016-17)

You can read a related article Translating Value at Different Stages of Design with Minimal Waste  here: http://desops.io/2018/05/12/translating-value-at-different-stages-of-design-with-minimal-waste/

Translating Value at Different Stages of Design with Minimal Waste

In 1967 Ronald Barthe published Elements of Semiology, which stands as a temporal marker of post-structuralism, where he gave rise to the idea of “Meta Language”, which in fact “beyond language” or “Second-order language” which is used to describe, explain or interpret a “First order language”. Each order of language implicitly relies on a metalanguage by which it is explained. And it is obvious that the translations between the first order and the second order never loss-less and the true meaning of the first order language is lost or deteriorates when it is represented in “Second-order language”. Design process involving multiple intersections of information communication and sharing through translation of the value (e.g. vision, idea), loses its original meaning while being translated through different tools into various forms of expressions. Also, the different roles (e.g. Product stakeholder or product manager, information architect, interaction designer, visual designer, prototyper and developer etc. ) contribute to the infinite regression of “meaning” of the value.

That’s why one of the key factors that working with developers in terms of the realization of the design has always been a big pain and non-stop iterations, and this turning in favour of the term Full-stack Designer that shares the same spirits as that of the term Full-stack Developer.

(Download PDF from http://desops.io/2018/05/10/infographic-the-full-stack-roles-in-desops/ )

Typically the phrase “full-stack” (or full-stack developer) refers to someone who is someone comfortable and could single-handedly tackle every layer of software development. Typically DevOps engineers and full-stack developers share the same philosophical traits — they strive for greater agility and flexibility and hint at a trend towards greater generalization in the skillset of technical professionals. In case of the full-stack designer, he grows into a cross-disciplinary professional who can handle across Interaction Design, Visual Design as well as UI Development or prototyping. This helps to reduce the gaps between the outputs from these different and the effort that goes into the translation of concept flowing from one stage to another, where there are many roles assigned to more than one persons are involved (And remember that one of the key principles of DesOps is to remove waste by applying practices like Lean models).

So if we see that one of the major focus of DesOps in this aspect involving the work-culture is to reduce the gaps between the roles and wastage thereby. The translation from one role and discipline to another makes the meaning second-hand interpretation and such process is never loss-less. Something or the other gets lost in translation, as we progress towards the realization of the value or the product.

So by implementing Lean methodologies and by striving towards having minimally sized team members with as diversified expertized to help to minimize the intersections or touch points among disciplines and roles where the translation happens. In short less need to translate the value, the less information gets lost and less is the waste in terms of value, effort, cost and time.

Going “full-stack” is one approach to avoid the waste that happens in the process that Barthe has termed as indefinite regression or Aporia . This is mostly from the roles perspective. The other approach is through process or work practices redesign to reduce the number of intersections where the translation happens. In the context of DesOps, this is significant, as it involves the interactions at various levels between the primary two entities i.e. human (i.e.people or user ) and machine, namely — from human-to-human, human-to-machine, machine-to-human and machine-to-machine.

So one of the key factors involved while implementing the DesOps in the organization is to look for process re-design to “minimize the touch points of interaction” through the principle that advocates to minimize the gaps between the roles.

Sometime back, I was evaluating some of the design systems and tools available to study the pain-points while transitioning the design concept from one tool to another and moving from one role to the other. I got in touch with many of my friends who were designers by profession in different enterprises and were at different levels of comforts with existing design and wireframing toolsets, starting from Adobe Suite to the Sketch based eco-systems. Based on the discussions, the interesting thing that I found was many of the tools being used at different organizations, are selected based on the pricing and what the team is comfortable working with, rather than with a focus to have a seamless workflow. In many cases, the cost played a bigger role and due to licence cost, some had switched from most popular design tools to the cheaper replacements. However, the biggest struggle that was there was never solved i.e. the iterations in the design process remained challenging despite the change in tools. Every change in design aspect that was iterated was facing the overshoot of the effort, time and cost. The transitions of value from one set of tool to the other e.g. the quick wireframe created in Powerpoint during the stakeholder workshops were being translated into Photoshop was actually about relooking at the layout due to the constraint that popped up while working with the specific widgets in a specific resolution that never went well the wireframe concept. In one organization, the team replaced the Powerpoint with Sketch and tried to use that to complete the process, which turned into a nightmare as the sessions ended with the people struggling with the tool.

In search of a tool that can minimize the translations of values, I was toying with an idea of Ditto, a simplified version of the tool that can look familiar to the different roles involved in the process and at the same time it will align with a process that is about having the same source files at any of the stages of the process and can align with any design system with easy configuration mechanism.

(Figure : The common pain-points in typical Design-process  )

 

(Figure : Typical Design process based on various touch-points where translation happens )

Ditto is a conceptual vision of a design tool that uses UI pattern Library (which is configurable ) and understands the relationships among the components of the design system configured to create and maintain its own objects that can be rendered on a super simple easy-to-follow and familiar looking interface with drag and drop kind interactions enabling the users of different role to focus on their goal rather than figuring out how to use the tool. Conceptually Ditto was capable of taking any type of inputs and exporting different types of outputs on demand e.g. the wireframes, visual comps and ready to deploy UI coded with HTML/ CSS/JS.

(Figure : The conceptual solution, Ditto is based on a “Single-Source” based process )

(Figure : The conceptual solution, Ditto  is based on a “Seamless Workflow” based process )

 

Watch a video demo that elaborates the concept in context to these use-cases —

The benefit of such a tool would be to reduce the critical – dependency on any particular role in the team in order to carry out with the project. For example, assuming a startup is only having a visionary guy with a developer, he can go into the tool to drag-drop few shapes and objects in a traditional Powerpoint / Keynote kind of interface which he is familiar with and export that as a barebone interactive code/prototype that can be tested. He can continuously test and get feedback, based on which he can tweak the same source and iterate. His developer friend can use the same source to export the code in a click to use in the production. And interestingly if he makes any change, that would be updated back to the same source. Later if a visual designer’s help is taken to customize the look and feel, it would allow updating the same source that’s running in the production where the necessary changes to the code will be managed by Ditto in the background. And despite the fact that the visual designer modified the source, (which affects the internal code) he is doing that in a Photoshop kind of environment familiar to him.

If we look at this “Single Source Based Design Eco-System“, any role can enter and come out with a production-ready code, be it a product owner or CEO of the startup, or an interaction designer, visual designer or a UI developer.

The benefits of such a tool are many:

  • Seamless work-flow for Design – Developer collaboration
  • Saving on license cost as no longer it is required to use multiple design tools
  • Single source makes it maintainable.
  • The omini-change process ensures that any changes happening at any stage of design stage will automatically take effect on other stage deliverables. (i.e. assuming at if UI html code is tweaked, it will also reflect in wireframe and visual design stages without any extra manual work!)
  • Zero learning-curve
  • Single user – Single Tool: makes it easy for any of the roles can login and generate implementation ready UI output.
  • Significantly reduces Cosmetic / UI compliance issues
  • Significantly reduces the time to implementation of the design concepts
  • Boon for Agile projects where the changes are common.

Some of the components of the conceptual design tool Ditto, you might have noticed are already available in some of the design tools. For example, similar in Sketch, you can create a custom pattern library theme and use drag and drop to add them while you are designing. But, its more about customizing themes based on existing ones and exporting shapes specific CSS at the end, which is at a very lower level of maturity from a design system standpoint. Similarly, exporting existing design to HTML feature from Adobe’s Creative Cloud Extract in some sense does not take account into how certain design systems of high maturity can be fit into it so that the output can have functional interactions as a part of business flow for the UI.

But certainly, Bootstrap Studio is much closer to the concept of Ditto. It can be improved around the areas configurations and there is a need to move away from the traditional Application type UI and interaction layer so that it can align to one of the core attributes i.e. to make each user role feel familiar with the interface or rather making it easy to follow. The UI widget based WordPress-page builder tools like Elementor are closer in this regard. While talking about Eco-Systems the tools and technologies, I will write about what are the tool-chains that we can combine for different levels of DesOps implementation looking at the maturity levels of Design Systems in play in the organizations.

Well, the thoughts presented above is a practical example of conceptualizing a value communication using improvements in processes and using technology to applying regression to the touch points where the translation happens, and thereby reducing waste and avoiding loss of meaning of value throughout the design process. We will explore the aspect of communication aspect of human-to-human, that is an important part of DesOps culture. Stay tuned.

(c)2018 , Samir Dash. All rights reserved.

(This article is originally published at on May 12, 2018 at  https://www.linkedin.com/pulse/desops-next-wave-design-part-11-translating-value-different-dash/ )

Infographic: The Left-Right Brain Analogy for Incident Tracking in DesOps

 

Download the PDF version here: https://www.slideshare.net/MobileWish/infographic-the-leftright-brain-analogy-for-incident-reporting-in-desops

©2018,”Infographic: The Left-Right Brain Analogy for Incident Reporting in DesOps” by Samir Dash.
Creative Commons Attribution-Share Alike 4.0 International License

Infographic: The Ten Practices of DesOps (aka. DesignOps)

 

Download the PDF version here: https://www.slideshare.net/MobileWish/the-ten-practices-of-desops-aka-designops

©2018,”The Ten Commandments of DesOps” by Samir Dash.
Creative Commons Attribution-Share Alike 4.0 International License

Engineering and Design Processes: Usability Engineering vs. Usability Design


(Originally first published on July 2, 2014 at https://www.linkedin.com/pulse/20140702065138-9377042-engineering-and-design-processes-usability-engineering-vs-usability-design/ )

Also, this article is a part of the title UX Simplified: Models & Methodologies by Samir Dash (ISBN: 978-1-3115-9110-4 / ASIN: B00LPQ22O0 ).  Available at Amazon: http://www.amazon.com/dp/B00LPQ22O0/


Usability Engineering

Usability Engineering began to emerge as a distinct set of “professional practice” in the mid- to late 1980s. The majority of the professionals of this practices were from varied backgrounds such as Computer Science or in a sub-field of Psychology such as Perception, Cognition or Human Factors. Today this field is being populated from some newer discipline such as Cognitive Science and Human-Computer Interaction.

Usability engineering, is defined by Preece as

‘an approach to system design in which levels of usability are specified and defined quantitatively in advance, and the system is engineered towards these measures, which are known as metrics.’

The whole concept of Usability Engineering focuses on the “metrics for measuring usability”.

As the emphasis on usability metrics through “analysis and evaluation”is mostly the soul focus of this process, there is not enough focus on the actual design process. In this process the usability is tried to be attained through “engineering and quantifiable methods and techniques” rather than “designing the way to usability”.

Also the “usability engineering”focuses only on providing range of techniques to analyze users, specify usability goals, evaluate designs, but it does not address the whole development process.It has more of a focus on “assessing and making recommendations to improve usability than it does on design, though Usability Engineers may still engage in design to some extent, particularly design of wire-frames or other prototypes”.

The usability engineering mostly seen as a separate activity that can be plugged into different SDLC models as a separate set of activities from a process-oriented perspective.

The Usability Engineering conducts evaluations through the following tools and methodologies:

  1. usability testing
  2. interviews
  3. focus groups
  4. questionnaires/surveys
  5. cognitive walkthroughs
  6. heuristic evaluations
  7. RITE method
  8. cognitive task analysis
  9. contextual inquiry
  10. Think aloud protocol

User-Centered Systems Design (UCSD)

User-Centered Systems Design (UCDS) is set of “usability design” process focusing on usability throughout “the entire development process and further throughout the system life cycle”. It is based on the following key principle:

  1. User focus: The goals of the activity, the work domain or context of use, the users’ goals, tasksand needs should control the development.
  2. Active user involvement: Representative users should actively participate, early and continuously throughout the entire development process and throughout the system life cycle.
  3. Evolutionary systems development: The systems development should be both iterative and incremental.
  4. Simple design representations: The design must be represented in such ways that it can be easily understood by users and all other stakeholders.
  5. Prototyping: Early and continuously, prototypes should be used to visualize and evaluate ideas and design solutions in cooperation with the users.
  6. Evaluate use in context: Baseline usability goals and design criteria should control the development.
  7. Explicit and conscious design activities: The development process should contain dedicated design activities.
  8. A professional attitude: The development process should be conducted by effective multidisciplinary teams.
  9. Usability champion: Usability experts should be involved from the start of project to the very end.
  10. Holistic design: All aspects that influence the future use situation should be developed in parallel.
  11. Process customization: TheUCSDprocessmust be specified, adapted and implemented locally ineach organization. Usability cannot be achieved without a user-centered process. There is, however,no one-size-fits-all process.
  12. A user-centered attitude must be established: UCSD requires a user-centered attitude throughout theproject team, the development organization and the client organization.

The typical process flow of UCSD can be visualized as the following steps (based on ISO/TR 18529:2000):

  1. Pre-study and business analysis: It can be anything from a comprehensive analysis of work procedures, business processes, etc., to a brief statement or vision.
  1. Planning the user-centered systems design process: includes setting up the project with resources, activities, roles, methods, etc.
  1. Do iterative UCSD /Usability DesignActivities: The usability design process approximately.
  1. Formal Summative Evaluation: It covers the usability of the resulting system, as opposed to the formative evaluations used in the usability design process to learn about details in the design .
  1. Introduce and Operate the System: includes installation, change management, user training, evaluating long-term effects and so forth.

The focus of UCDS is all about “changing the attitude among all professionals involved in the software development process” and these set of 10 principles are key for the “user-centered systems design process” which helps in giving “equal weight to interaction design, analysis and evaluation, combining interaction design, and usability engineering”.

Usability Design

The Usability Design is roughly a subset of the UCSD process that matches the “Do Iterative UCSD” step of the UCSD process.

Further study

The usability design outlines the steps in the development process involving usability design aspects. The process can be divided into three main phases:

  1. Requirements analysis: This step is synonymous with planning and analysis phase of typical software development life cycle(SDLC).
  2. Growing software with iterative design: This is the design and testing phase and development phase of typical SDLC.
  3. Deployment: This is same as deployment phase of typical SDLC.

http://samirshomepage.wordpress.com/2013/09/23/dont-get-confused-ucd-vs-ucsd/

(c) 2012-14, Samir Dash